United States Patent

US009311598B1

(12) 10y Patent No.: US 9,311,598 B1
Bansal et al. (45) Date of Patent: Apr. 12,2016
(54) AUTOMATIC CAPTURE OF DETAILED 6,324,492 Bl 11/2001 Rowe
ANALYSIS INFORMLATION FOR WE o0 Bl LU0 Rhan,
APPLICATION OUTLIERS WITH VERY LOW 6378.070 Bl 4/2002 Chan et al.
OVERHEAD 6,457,142 Bl 9/2002 Klemm et al.
6,496,825 Bl 12/2002 Klein et al.
. : : . 6,507,805 Bl 1/2003 Gordon et al.
(75) Inventors: g:’tll? anssal’ks an Fgam;sco’ CA (UCSK 6,513,155 Bl 1/2003 Alexander ef al.
askar Sankara, San Francisco, 6,529,932 Bl 3/2003 Dadiomov et al.
(US); Manoj Acharya, San Francisco, 6,539,339 Bl 3/2003 Berry et al.
CA (US); Vinay Srinivasaiah, San g,g‘s‘g,ggi g} 3%883 ii:rry e(ti al. N
. P ,553, exander et al.
Eranc?sco’ gi (US)’ Binil Thomas, San 6,560.773 Bl 52003 Alexander et al.
rancisco, CA (US) 6,598,012 Bl 7/2003 Berry etal.
(73) Assignee: AppDynamics, Inc., San Francisco, CA (Continued)
Us) OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this U.S. Appl. No. 13/189,360, filed Jul. 22, 2011, Jyoti Bansal, Auto-
patent is extended or adjusted under 35 matic Capture of Diagnostic Data Based on Transaction Behavior
U.S.C. 154(b) by 337 days. Learning.
(Continued)
(21) Appl. No.: 13/365,171
. Primary Examiner — Kakali Chaki
(22) Filed: Feb. 2, 2012 Assistant Examiner — Michael Zidanic
(51) Int.CL (74) Attorney, Agent, or Firm — Bachmann Law Group
GOG6F 9/46 (2006.01)
GOGN 5/00 (2006.01) 67 ABSTRACT
52) U.S.CL A system monitors a network or web application provided b
(52) Y pp p y
CPC oo GO6N 5/00 (2013.01) one or more distributed applications and provides data for
(58) Field of Classification Search each and every method instance in an efficient low-cost man-
CPC GO6F 11/34; GO6F 11/36; GOGF 9/50; ner. Theweb application may be provided by one or more web
G06Q 10/06 services each implemented as a virtual machine or one or
USPC oo ssssessnss e 706/12 ~ more applications implemented on a virtual machine. Agents
See application file for complete search history. may be installed on one or more servers at an application
level, virtual machine level, or other level. The agent may
56 References Cited identify one or more hot spot methods based on current or past
(56) y P p

U.S. PATENT DOCUMENTS

5,781,703 A 7/1998 Desai et al.
6,002,872 A 12/1999 Alexander et al.
6,158,024 A 12/2000 Mandal
6,225,995 Bl 5/2001 Jacobs et al.
6,295,548 Bl 9/2001 Klein et al.

Network
Browser

Client 105

Network
Server

125

Mobile
device
s

performance, functionality, content, or business relevancy.
Based on learning techniques, efficient monitoring, and
resource management, the present system may capture data
for and provide analysis information for outliers of a web
application with very low overhead.

26 Claims, 10 Drawing Sheets

App Server 140
VM2 142
Agent 144

Datastore 1
180

y App Server 160
Controller [« > VM4 162]
L?g Agent 1864

Asynch
network
machine
170 y

App Server 150
> VM3 152]

100

< > Datastore 2
188

Agent 154

US 9,311,598 B1

Page 2
(56) References Cited 2004/0199815 A1 10/2004 Dinker et al.
2004/0215768 Al 10/2004 Oulu et al.
U.S. PATENT DOCUMENTS 2004/0230956 Al* 112004 Cimeetal. ... 717/128
2005/0004952 Al 1/2005 Suzuki et al.
6,604,210 Bl 8/2003 Alexander et al. 2005/0021736 Al 1/2005 Carusi et al.
6,651,243 Bl 11/2003 Berry et al. 2005/0071447 Al 3/2005 Masek et al.
6,658,652 Bl 12/2003 Alexander et al. 2005/0210454 Al 9/2005 DeWitt et al.
6,662,358 Bl 12/2003 Berry et al. 2005/0235054 Al 10/2005 Kadashevich
6,718,230 B2 4/2004 Nishiyama 2006/0015512 Al 1/2006 Alon et al.
6,721,941 Bl 4/2004 Morshed et al. 2006/0059486 Al 3/2006 Loh etal.
6,728,949 Bl 4/2004 Bryant et al. 2006/0075386 Al 4/2006 Loh et al.
6,728,955 Bl 4/2004 Berry et al. 2006/0130001 Al 6/2006 Beuch et al.
6,732,357 Bl 5/2004 Berry et al. 2006/0136920 Al 6/2006 Nagano et al.
6,735,758 Bl 5/2004 Berry et al. 2006/0143188 Al 6/2006 Bright et al.
6,751,789 Bl 6/2004 Berry et al. 2006/0155753 Al 7/2006 Asher et al.
6,754,890 Bl 6/2004 Berry et al. 2006/0291388 Al 12/2006 Amdahl et al.
6,760,903 Bl 7/2004 Morshed et al. 2007/0038896 Al 2/2007 Champlin et al.
6,904,594 Bl 6/2005 Berry et al. 2007/0074150 Al 3/2007 Jolfaci et al.
6,944,797 Bl 9/2005 Guthrie et al. 2007/0124342 Al 5/2007 Yamamoto et al.
6,978,401 B2 12/2005 Avvari et al. 2007/0143290 Al 6/2007 Fujimoto et al.
6985912 B2 1/2006 Mullins et al. 2007/0150568 Al 6/2007 Ruiz
6,990,521 Bl 1/2006 Ross 2007/0250600 Al 10/2007 Freese et al.
7,124354 Bl 10/2006 Ramani et al. 2007/0266148 Al 11/2007 Ruiz etal.
7,233,941 B2 6/2007 Tanaka 2008/0034417 Al 2/2008 Heetal.
7,328,213 B2 2/2008 Suzuki et al. 2008/0066068 Al 3/2008 Felt et al.
7,389,497 Bl 6/2008 Edmark et al. 2008/0109684 Al 5/2008 Addleman et al.
7,389,514 B2 6/2008 Russell et al. 2008/0134209 Al 6/2008 Bansal et al.
7,406,523 Bl 7/2008 Kruy et al. 2008/0148240 Al 6/2008 Jones et al.
7,496,901 B2 2/2009 Begg et al. 2008/0155089 Al* 6/2008 Huntetal. ... 709/224
7499951 B2 3/2009 Mueller et al. 2008/0163174 Al 7/2008 Krauss
7,506,047 B2 3/2009 Wiles, Jr. 2008/0172403 Al 7/2008 Papatla et al.
7,519,959 Bl 4/2009 Dmitriev 2008/0243865 Al 10/2008 Hu et al.
7,523,067 Bl 4/2009 Nakajima 2008/0307441 Al 12/2008 Kuiper et al.
7,577,105 B2 8/2009 Takeyoshi et al. 2009/0006116 Al 1/2009 Baker et al.
7,606,814 B2 10/2009 Deily et al. 2009/0007072 Al 1/2009 Singhal et al.
7,689,688 B2 3/2010 Iwamoto 2009/0007075 Al 1/2009 Edmark et al.
7,721,268 B2 5/2010 Loh et al. 2009/0049429 Al 2/2009 Greifeneder et al.
7,730,489 Bl 6/2010 Duvur et al. 2009/0064148 Al 3/2009 Jaeck et al.
7,739,675 B2 6/2010 Klein 2009/0106601 Al 4/2009 Ngai et al.
7,792,948 B2 9/2010 Zhao et al. 2009/0138881 Al 5/2009 Anand et al.
7,836,176 B2 11/2010 Gore et al. 2009/0150908 Al 6/2009 Shankaranarayanan et al.
7,844,033 B2 11/2010 Drum et al. 2009/0187791 Al 7/2009 Dowling et al.
7,877,642 B2 1/2011 Ding et al. 2009/0193443 Al 7/2009 Lakshmanan et al.
7,886,297 B2 2/2011 Nagano et al. 2009/0210876 Al 8/2009 Shen et al.
7,908,346 B2 3/2011 Boykin et al. 2009/0216874 Al 8/2009 Thain et al.
7,953,850 B2 5/2011 Mani et al. 2009/0241095 Al 9/2009 Jones et al.
7,953,895 Bl 5/2011 Narayanaswamy et al. 2009/0287815 Al 11/2009 Robbins et al.
7,966,172 B2 6/2011 Ruiz et al. 2009/0300405 Al 12/2009 Little
7,979,569 B2 7/2011 Eisner et al. 2009/0328180 Al 12/2009 Coles et al.
7,987,453 B2 7/2011 DeWitt et al. 2010/0017583 Al 1/2010 Kulper et al.
7,992,045 B2 8/2011 Bansal et al. 2010/0088404 Al 4/2010 Mani et al.
8,001,546 B2 8/2011 Felt et al. 2010/0094992 Al 4/2010 Cherkasova et al.
8,005,943 B2 8/2011 Zuzga et al. 2010/0100774 Al 4/2010 Ding et al.
8,069,140 B2 11/2011 Enenkiel 2010/0131931 Al 5/2010 Musuvathi et al.
8,099,631 B2 1/2012 Tsvetkov 2010/0131956 Al 5/2010 Drepper
8,117,599 B2 2/2012 Edmark et al. 2010/0138703 Al 6/2010 Bansal et al.
8,132,170 B2 3/2012 Kulper et al. 2010/0183007 Al 7/2010 Zhao et al.
8,155,987 B2 4/2012 Jaeck et al. 2010/0257510 Al 10/2010 Horley et al.
8,205,035 B2 6/2012 Reddy et al. 2010/0262703 Al 10/2010 Faynberg et al.
8,286,139 B2 10/2012 Jones et al. 2010/0268797 Al 10/2010 Pyrik et al.
8,438,427 B2 5/2013 Beck et al. 2010/0312888 Al 12/2010 Alon et al.
8,560,449 Bl 10/2013 Sears 2010/0318648 Al 12/2010 Agrawal et al.
8,606,692 B2 12/2013 Carleton et al. 2011/0016207 Al* 12011 Gouletetal. 709/224
8,843,684 B2 9/2014 Jones et al. 2011/0016328 Al 1/2011 Quetal.
8,938,533 Bl 1/2015 Bansal 2011/0087722 Al 4/2011 Clementi et al.
9,015,317 B2 4/2015 Bansal 2011/0088045 Al 4/2011 Clementi et al.
9,037,707 B2 5/2015 Bansal 2011/0264790 Al 10/2011 Haeuptle et al.
2002/0016839 Al 2/2002 Smith et al. 2012/0117544 Al 5/2012 Kakulamarri et al.
2002/0021796 Al 2/2002 Schessel 2012/0191893 Al 7/2012 Kulper et al.
2002/0052962 Al 5/2002 Cherkasova et al. 2012/0291113 Al 11/2012 Zapata et al.
2002/0110091 Al* 82002 Rosborough etal. 370/252 2012/0297371 Al 11/2012 Greifeneder et al.
2003/0093433 Al 5/2003 Seaman et al. 2014/0068067 Al 3/2014 Bansal
2003/0158944 A1 8/2003 Branson et al. 2014/0068068 Al 3/2014 Bansal
2003/0206192 A1 11/2003 Chen et al. 2014/0068069 Al 3/2014 Bansal
2004/0015920 Al* 1/2004 Schmidtcccconvvrne 717/153 OTHER PUBLICATIONS
2004/0049574 Al 3/2004 Watson et al. U.S. Appl. No. 13/189,360; Office Action mailed Mar. 26, 2014.
2004/0133882 Al 7/2004 Angel et al. U.S. Appl. No. 13/189,360; Final Office Action mailed Aug. 19,
2004/0193552 Al 9/2004 Ikenaga et al. 2013.
2004/0193612 Al 9/2004 Chang U.S. Appl. No. 13/189,360; Office Action mailed Jan. 31, 2013.

US 9,311,598 B1

Page 3
(56) References Cited U.S. Appl. No. 14/071,523; Final Office Action mailed Aug. 29,
2014.
OTHER PUBLICATIONS U.S. Appl. No. 14/071,525; Final Office Action mailed Aug. 1,2014.
U.S. Appl. No. 14/690,254, filed Apr. 17, 2015, Jyoti Bansal, Con-
U.S. Appl. No. 14/071,503; Office Action mailed Feb. 3, 2014. ducting Diagnostic Session For Monitored Business Transac-
U.S. Appl. No. 14/071,523; Office Action mailed Feb. 12, 2014. tions.

U.S. Appl. No. 14/071,525; Office Action mailed Jan. 15, 2014.
U.S. Appl. No. 14/071,503; Final Office Action mailed Aug. 28,
2014. * cited by examiner

US 9,311,598 B1

Sheet 1 of 10

Apr. 12,2016

U.S. Patent

g3l
Z aloiseieq

081
| alojseleq

14512

Y

2

<

ueby

I

[

(ATAY

DT Jon108 ddy

4}
lanieg

}JomleN

| 3dN9Id
Gl usby
ST EWA | [
0G| Jomos ddy
0Z1 1 i
auiyoew
}iomisu
UouAsy
6l
90IAOP
ualD
9T 1ueby %
=57 b A l«——p I9Jj05jU0D
091 Joaleg ddy
¥PT Jusby
VT ZTINA | [

01 Joneg ddy

001

[
20IAOp

SlIqoN

0l LID

0Ll
Josmolg

MJOMION

U.S. Patent Apr. 12,2016 Sheet 2 of 10 US 9,311,598 B1

App Server 200

VM A Inst ted
Instrumented — nstrumente
entry points Application 220 exit points

240 Instrumented Instrumented 260
-¢ ! entry points exit points | >
250 270
230

FIGURE 2

U.S. Patent Apr. 12,2016 Sheet 3 of 10 US 9,311,598 B1

300 Configure diagnostics parameters for

agents N

* 310

Monitor requests and collect runtime data

by agents N
+ 320
Collect diagnostic data for outliers
g N

330

Receive
instructions from controller

to collect diagnostic
data? 340
Collect diagnostic data based on controller
instuctions N
1 350
Report collected data to controller —

‘ 360

FIGURE 3

U.S. Patent Apr. 12,2016 Sheet 4 of 10 US 9,311,598 B1

Load available call graph data learned previously f— 410
330 ¢
Set learning setting — 415
'
Begin call graph building —— 420
'
ldentify hot spot methods — 425
'
Update learning setting — 430
'
Validate hot spot methods — 435
'
Apply hot spot methods — 440
'
Capture hot spot data — 445
'
Qualify hot spot data — 450
'
Process stored hot spot data — 455

FIGURE 4

U.S. Patent Apr. 12,2016 Sheet 5 of 10

Method

US 9,311,598 B1

execution time longer than
threshold?

510 N

Method make call to database?

515
N

Method Y
make call outside of

JVM?
N

520

Method

exceed cyclometric complexity
threshold?

N

525

Method orchestrate a flow?

530

Method an entry point method?

535
N

Method

key to business
function?

540 N

425

Y

Method is not a hot spot ldentify method as a hot spot

~ P
545 550

FIGURE 5

U.S. Patent Apr. 12,2016 Sheet 6 of 10 US 9,311,598 B1

Begin business transaction

M
¢ 610
Set index pointer at first array block

B15
v

Set block pointer to first field of current
block

820
| "y

Set index pointer Store hot spot method ID, update block
to next block, pointer —
block pointerto ko 625
next available 655 *
address Store hot spot method start time, update
* block pointer \63 0

1
Index pointer
to external call

3

Store external
call data '~

Y645
Was call made outside JYM?
N | 640

445

Current method complete?
Y 66

Change index

Method completion
time > threshold?

670

Index pointer
to next block

—

Index pointer to start of current block k
680

- . N
Business transaction done?

Store hot spot method end time - pointer to
665 previous block
A S
690

685 FIGURE 6

U.S. Patent Apr. 12,2016 Sheet 7 of 10 US 9,311,598 B1

Access all hot spot
7 methods

Number
of hot spot methods > hot spot
threshold?

Select high priority hot spot
Select all hot spot methods cthigh prionty PO

methods
725
1 |
720
N Hot spot snapshot Y

instances for selected methods > hotspot
instances threshold?

Select high priority
A selected hot spot snapshot
740 instances

Select all selected hot spot
snapshot instances

~ [

735 *

Store data for selected hot spot
~ snapshot instances

End Select remaining high spot

/ methods
760

755

FIGURE 7

450

U.S. Patent Apr. 12,2016

Sheet 8 of 10

Access root block in business transaction

»i

Access next stored data block in business
transaction

US 9,311,598 B1
455
~~
810
N

Current block is child of

previous block

840

Current block is sibling
of previous block

AN

More
blocks in business
ransaction?

850

860

Assemble call graph based on block
relationships

FIGURE 8

870

U.S. Patent Apr. 12,2016 Sheet 9 of 10 US 9,311,598 B1

—
Hot Spot Method A Hot Spot Method B | _ Hot Spot Method C
FIGURE 9A
Method Array
Method St’;‘rt (Aend Method | B start | (B end | Method| C start | ¢ end
ID A . time) IDB time time) IDC time time
time
Index Block

FIGURE 9B

1000

U.S. Patent

US 9,311,598 B1

Apr. 12,2016 Sheet 10 of 10
R Output |
1010 Processor devices 1050
Input L
1020~ Memory Devices 1060
] Mass Display
1030 Storage System [1070
Portable)
1040~ Storage Peripherals ~1080
"_ 1090

Fiqure 10

US 9,311,598 B1

1
AUTOMATIC CAPTURE OF DETAILED
ANALYSIS INFORMATION FOR WEB
APPLICATION OUTLIERS WITH VERY LOW
OVERHEAD

BACKGROUND OF THE INVENTION

The World Wide Web has expanded to provide web ser-
vices faster to consumers. Web services may be provided by
a web application which uses one or more services to handle
a transaction. The applications may be distributed over sev-
eral machines, making the topology of the machines that
provides the service more difficult to track and monitor.

Monitoring a web application helps to provide insight
regarding bottle necks in communication, communication
failures and other information regarding performance of the
services the provide the web application. When a web appli-
cation is distributed over several machines, tracking the per-
formance of the web service can become impractical with
large amounts of data collected from each machine.

When a distributed web application is not operating as
expected, additional information regarding application per-
formance can be used to evaluate the health of the application.
Collecting the additional information can consume large
amounts of resources and often requires significant time to
determine how to collect the information.

It very difficult to collect information for specific methods
that perform poorly. To collect and store information for each
and every method of a web application would take up too
many resources and degrade performance of the application.
As a result, by the time a web application is detected to be
performing poorly, it is too late to collect data regarding the
performance of the instance that is performing poorly, and
only subsequent methods can be monitored.

There is aneed in the art for web service monitoring which
may accurately and efficiently monitor the performance of
distributed applications which provide a web service.

SUMMARY OF THE CLAIMED INVENTION

A system monitors a network or web application provided
by one or more distributed applications and provides data for
each and every method instance in an efficient low-cost man-
ner. The web application may be provided by one or more web
services each implemented as a virtual machine or one or
more applications implemented on a virtual machine. Agents
may be installed on one or more servers at an application
level, virtual machine level, or other level. The agent may
identify one or more hot spot methods based on current or past
performance, functionality, content, or business relevancy.
Based on learning techniques, efficient monitoring, and
resource management, the present system may capture data
for and provide analysis information for outliers of a web
application with very low overhead.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of an exemplary system for
monitoring a distributed application.

FIG. 2 is a block diagram of an exemplary application
server.

FIG. 3 is a flow chart of an exemplary method for perform-
ing a diagnostic session for a distributed web application
transaction.

FIG. 4 is a flow chart of an exemplary method for tracking
hot spot method data.

35

40

45

55

60

65

2

FIG. 5 is a flow chart of an exemplary method for identi-
fying hot spot methods.

FIG. 6 is a flow chart of an exemplary method for capturing
hot spot data.

FIG. 7 is a flow chart of an exemplary method for qualify-
ing hot spot data.

FIG. 8 is a flow chart of an exemplary method for process-
ing stored hot spot data.

FIG. 9A is a block diagram of illustrating method calling
hierarchy.

FIG. 9B is a block diagram of a method array.

FIG. 10 is a block diagram of an exemplary system for
implementing a computing device.

DETAILED DESCRIPTION

The present technology monitors a network or web appli-
cation provided by one or more distributed applications and
provides data for each and every method instance in an effi-
cient low-cost manner. The web application may be provided
by one or more web services each implemented as a virtual
machine or one or more applications implemented on a vir-
tual machine. Agents may be installed on one or more servers
at an application level, virtual machine level, or other level.
An agent may monitor a corresponding application (or virtual
machine) and application communications. The agent may
automatically identify one or more hot spot methods based on
current or past performance, functionality, content, or busi-
ness relevancy. The agent includes logic enabling it to auto-
matically and dynamically learn the hot spot methods execut-
ing on a JVM. The hot spots are monitored, and data for the
executed hot spot is kept or discarded based on the perfor-
mance of the hot spot. Based on learning techniques, efficient
monitoring, and resource management, the present system
may capture data for and provide analysis information for
outliers of a web application with very low overhead.

The hot spot monitoring may be performed by execution
threads that manage method arrays of data. Each execution
thread may manage one method array, and each method array
may contain one block for each method that executes or is
called by the executing method. Each block may include data
used to analyze the method execution, such as for example a
method ID, start time, end time. If a method called by an
execution thread performs in a satisfactory manner, the data
for the called method (method ID, start time, end time) is
ignored and may be overwritten. If the method called by the
execution thread (or the root method itself) does not perform
in a satisfactory manner by for example exceeding a threshold
time to complete, the data for the method is maintained and
reported at the completion of the method. By monitoring
method execution and call data in the thread header and
ignoring data for methods that perform in a satisfactory man-
ner, the present technology may monitor outliers for the dura-
tion of their execution in an efficient, low cost manner.

The present technology may perform a diagnostic session
for an anomaly detected in the performance of a distributed
web application. During the diagnostic session, detailed data
may be collected for the operation of the distributed web
application. The data may be processed to identify perfor-
mance issues for a transaction. Detailed data for a distributed
web application transaction may be collected by sampling
one or more threads assigned to handle portions of the dis-
tributed business transaction. Data regarding the distributed
transaction may be reported from one or more agents at an
application or Java Virtual Machine (JVM) to one or more
controllers. The data may be received and assembled by the
one or more controllers into business transactions.

US 9,311,598 B1

3

An anomaly in the performance of a distributed web trans-
action may be detected locally by an agent and centrally by a
controller. An agent may locally detect an anomaly by pro-
cessing collected runtime data for a request being processed
by an application or JVM. The agent may determine baselines
for request performance and compare the runtime data to the
baselines to identify the anomaly. A controller may receive
aggregated runtime data reported by the agents, process the
runtime data, and determine an anomaly based on the pro-
cessed runtime data that doesn’t satisfy one or more param-
eters, thresholds or baselines.

The monitoring system may monitor distributed web appli-
cations across a variety of infrastructures. The system is easy
to deploy and provides end-to-end business transaction vis-
ibility. The monitoring system may identify performance
issues quickly and has a dynamical scaling capability across
amonitored system. The present monitoring technology has a
low footprint and may be used with cloud systems, virtual
systems and physical infrastructures.

The present technology may monitor a distributed web
application that performs one or more business transactions.
A business transaction may be a set of tasks performed by one
ormore distributed web applications in the course of a service
provide over a network. In an e-commerce service, a business
transaction may be “add to cart” or “check-out” transactions
performed by the distributed application.

Agents may communicate with code within virtual
machine or an application. The code may detect when an
application entry point is called and when an application exit
point is called. An application entry point may include a call
received by the application. An application exit point may
include a call made by the application to another application,
virtual machine, server, or some other entity. The code within
the application may insert information into an outgoing call
or request (exit point) and detect information contained in a
received call or request (entry point). By monitoring incom-
ing and outgoing calls and requests, and by monitoring the
performance of a local application that processes the incom-
ing and outgoing request, the present technology may deter-
mine the performance and structure of complicated and dis-
tributed business transactions.

FIG. 1 is a block diagram of an exemplary system for
monitoring a distributed web application. The system of FIG.
1 may be used to implement a distributed web application and
detect anomalies in the performance of the distributed web
application. System 100 of FIG. 1 includes client device 105,
mobile device 115, network 120, network server 125, appli-
cation servers 130, 140, 150 and 160, asynchronous network
machine 170, data stores 180 and 185, and controller 190.

Client device 105 may include network browser 110 and be
implemented as a computing device, such as for example a
laptop, desktop, workstation, or some other computing
device. Network browser 110 may be a client application for
viewing content provided by an application server, such as
application server 130 via network server 125 over network
120. Mobile device 115 is connected to network 120 and may
be implemented as a portable device suitable for receiving
content over a network, such as for example a mobile phone,
smart phone, or other portable device. Both client device 105
and mobile device 115 may include hardware and/or software
configured to access a web service provided by network
server 125.

Network 120 may facilitate communication of data
between different servers, devices and machines. The net-
work may be implemented as a private network, public net-
work, intranet, the Internet, or a combination of these net-
works.

5

10

15

20

25

30

35

40

45

50

55

60

65

4

Network server 125 is connected to network 120 and may
receive and process requests received over network 120. Net-
work server 125 may be implemented as one or more servers
implementing a network service. When network 120 is the
Internet, network server 125 maybe implemented as a web
server.

Application server 130 communicates with network server
125, application servers 140 and 150, controller 190. Appli-
cation server 130 may also communicate with other machines
and devices (not illustrated in FIG. 1). Application server 130
may host an application or portions of a distributed applica-
tion and include a virtual machine 132, agent 134, and other
software modules. Application server 130 may be imple-
mented as one server or multiple servers as illustrated in FI1G.
1.

Virtual machine 132 may be implemented by code running
on one or more application servers. The code may implement
computer programs, modules and data structures to imple-
ment a virtual machine mode for executing programs and
applications. In some embodiments, more than one virtual
machine 132 may execute on an application server 130. A
virtual machine may be implemented as a Java Virtual
Machine (JVM). Virtual machine 132 may perform all or a
portion of a business transaction performed by application
servers comprising system 100. A virtual machine may be
considered one of several services that implement a web
service.

Virtual machine 132 may be instrumented using byte code
insertion, or byte code instrumentation, to modify the object
code of the virtual machine. The instrumented object code
may include code used to detect calls received by virtual
machine 132, calls sent by virtual machine 132, and commu-
nicate with agent 134 during execution of an application on
virtual machine 132. Alternatively, other code may be byte
code instrumented, such as code comprising an application
which executes within virtual machine 132 or an application
which may be executed on application server 130 and outside
virtual machine 132.

Agent 134 on application server 130 may be installed on
application server 130 by instrumentation of object code,
downloading the application to the server, or in some other
manner. Agent 134 may be executed to monitor application
server 130, monitor virtual machine 132, and communicate
with byte instrumented code on application server 130, vir-
tual machine 132 or another application on application server
130. Agent 134 may detect operations such as receiving calls
and sending requests by application server 130 and virtual
machine 132. Agent 134 may receive data from instrumented
code of'the virtual machine 132, process the data and transmit
the data to controller 190. Agent 134 may perform other
operations related to monitoring virtual machine 132 and
application server 130 as discussed herein. For example,
agent 134 may identify other applications, share business
transaction data, aggregate detected runtime data, and other
operations.

Each of application servers 140, 150 and 160 may include
an application and an agent. Each application may run on the
corresponding application server or a virtual machine. Each
of virtual machines 142, 152 and 162 on application servers
140-160 may operate similarly to virtual machine 132 and
host one or more applications which perform at lease a por-
tion of a distributed business transaction. Agents 144, 154 and
164 may monitor the virtual machines 142-162, collect and
process data at runtime of the virtual machines, and commu-
nicate with controller 190. The virtual machines 132, 142,
152 and 162 may communicate with each other as part of

US 9,311,598 B1

5

performing a distributed transaction. In particular each virtual
machine may call any application or method of another vir-
tual machine.

Controller 190 may control and manage monitoring of
business transactions distributed over application servers
130-160. Controller 190 may receive runtime data from each
of agents 134-164, associate portions of business transaction
data, communicate with agents to configure collection of
runtime data, and provide performance data and reporting
through an interface. The interface may be viewed as a web-
based interface viewable by mobile device 115, client device
105, or some other device. In some embodiments, a client
device 192 may directly communicate with controller 190 to
view an interface for monitoring data.

Asynchronous network machine 170 may engage in asyn-
chronous communications with one or more application serv-
ers, such as application server 150 and 160. For example,
application server 150 may transmit several calls or messages
to an asynchronous network machine. Rather than communi-
cate back to application server 150, the asynchronous net-
work machine may process the messages and eventually pro-
vide a response, such as a processed message, to application
server 160. Because there is no return message from the
asynchronous network machine to application server 150, the
communications between them are asynchronous.

Data stores 180 and 185 may each be accessed by applica-
tion servers such as application server 150. Data store 185
may also be accessed by application server 150. Each of data
stores 180 and 185 may store data, process data, and return
queries received from an application server. Each of data
stores 180 and 185 may or may not include an agent.

FIG. 2 is a block diagram of an exemplary application
server 200. The application server in FIG. 2 provides more
information for each application server of system 100 in FIG.
1. Application server 200 of FIG. 2 includes a virtual machine
210, application 220 executing on the virtual machine, and
agent 230. Virtual machine 210 may be implemented by
programs and/or hardware. For example, virtual machine 134
may be implemented as a JAVA virtual machine. Application
220 may execute on virtual machine 210 and may implement
at least a portion of a distributed application performed by
application servers 130-160. Application server 200, virtual
machine 210 and agent 230 may be used to implement any
application server, virtual machine and agent of a system such
as that illustrated in FIG. 1.

Application server 200 and application 220 can be instru-
mented via byte code instrumentation at exit and entry points.
An entry point may be a method or module that accepts a call
to application 220, virtual machine 210, or application server
200. An exit point is a module or program that makes a call to
another application or application server. As illustrated in
FIG. 2, an application server 200 can have byte code instru-
mented entry points 240 and byte code instrumented exit
points 260. Similarly, an application 220 can have byte code
instrumentation entry points 250 and byte code instrumenta-
tion exit points 270. For example, the exit points may include
calls to JDBC, IMS, HTTP, SOAP, and RMI. Instrumented
entry points may receive calls associated with these protocols
as well.

Agent 230 may be one or more programs that receive
information from an entry point or exit point. Agent 230 may
process the received information, may retrieve, modify and
remove information associated with a thread, may access,
retrieve and modify information for a sent or received call,
and may communicate with a controller 190. Agent 230 may

15

20

25

30

40

45

55

6

be implemented outside virtual machine 210, within virtual
machine 210, and within application 220, or a combination of
these.

FIG. 3 is a flow chart of an exemplary method for perform-
ing a diagnostic session for a distributed web application
transaction. The method of FIG. 3 may be performed to a web
transaction that is performed over a distributed system, such
as the system of FIG. 1.

Diagnostic parameters may be configured for a controller
and one or more agents at step 310. The diagnostic parameters
may be used to implement a diagnostic session conducted for
a distributed web application business transaction. The
parameters may be set by a user, an administrator, may be
pre-set, or may be permanently configured.

Examples of diagnostic parameters that may be configured
include the number of transactions to simultaneously track
using diagnostic sessions, the time of a diagnostic session, a
sampling rate for a thread, and a threshold percent of requests
detected to run slow before triggering an anomaly. The num-
ber of transactions to simultaneously track using diagnostic
sessions may indicate the number of diagnostic sessions that
may be ongoing at any one time. For example, a parameter
may indicate that only 10 different diagnostic sessions can be
performed at any one time. The time of a diagnostic session
may indicate the time for which a diagnostic session will
collect detailed data for operation of a transaction, such as for
example, five minutes. The sampling rate of a thread may be
automatically set to a sampling rate to collect data from a
thread call stack based on a detected change in value of the
thread, may be manually configured, or otherwise set. The
threshold percent of requests detected to run slow before
triggering an anomaly may indicate a number of requests to
be detected that run at less than a baseline threshold before
triggering a diagnostic session. Diagnostic parameters may
be set at either a controller level or an individual agent level,
and may affect diagnostic tracking operation at both a con-
troller and/or an agent.

Requests may be monitored and runtime data may be col-
lected at step 320. As requests are received by an application
and/or JVM, the requests are associated with a business trans-
action by an agent residing on the application or JVM, and
may be assigned a thread within a thread pool by the appli-
cation or JVM itself. The business transaction is associated
with the thread by adding business transaction information,
such as a business transaction identifier, to the thread by an
agent associated with the application or JVM that receives the
request. The thread may be configured with additional moni-
toring parameter information associated with a business
transaction. Monitoring information may be passed on to
subsequent called applications and JVMs that perform por-
tions of the distributed transaction as the request is monitored
by the present technology.

Diagnostic data may be collected for outliers at step 330.
Outlier data may be collected for an entire business transac-
tion. The system may learn about the methods performed on
a JVM, identify hot spot methods to monitor, capture data for
the identified hot spot methods, and process the hot spot data.
Hot spot methods are monitored in a very efficient and low
cost manner, creating very little overhead and using few
resources on JVMs being monitored. Tracking hot spot meth-
ods as part of collecting diagnostic data for outliers is dis-
cussed in more detail below with respect to the method of
FIG. 4.

A determination is made as to whether instructions have
been received from a controller to collect diagnostic data at
step 350. A diagnostic session may be triggered “centrally”
by a controller based on runtime data received by the control-

US 9,311,598 B1

7

ler from one or more agents located throughout a distributed
system being monitored. If a controller determines that an
anomaly is associated with a business transaction, or portion
of a business transaction for which data has been reported to
the controller, the controller may trigger a diagnostic session
and instruct one or more agents residing on applications or
JVMs that handle the business transaction to conduct a diag-
nostic session for the distributed business transaction. Opera-
tion of a controller is discussed in more detail below with
respect to the method of FIG. 9.

If no instructions are received from a controller to collect
diagnostic data, the method of FIG. 3 continues to step 370. If
instructions are received to collect diagnostic data from a
controller, diagnostic data is collected based on the controller
instructions at step 360. The agent may collect data for the
remainder of the current instance of a distributed application
as well as subsequent instances of the request. Collecting
diagnostic data based on instructions received by a controller
is described below with respect to the method of FIG. 5. Next,
data collected by a particular agent is reported to a controller
at step 370. Each agent in a distributed system may aggregate
collected data and send data to a controller. The data may
include business transaction name information, call chain
information, the sequence of a distributed transaction, and
other data, including diagnostic data collected as part of a
diagnostic session involving one or more agents.

FIG. 4 is a flow chart of an exemplary method for tracking
hot spot method data. The method of FIG. 4 provides more
detail for step 330 of the method of FIG. 3. Each step of FIG.
4 may be performed automatically by an agent (such as that
illustrated in FIG. 1) and/or other modules. Available call
graph data learned previously may be loaded by an agent at
the JVM at step 410. In some embodiments, the agent may
monitor one or more business transactions occurring at JVM
to determine the methods and relationships between methods
that make up the business transaction. As the business trans-
action methods are learned, they may be stored. When an
agent beings monitoring hot spot methods at a later time, the
learned methods and method relationships may be pre-loaded
to prevent having to re-learn the business transaction(s) meth-
ods and method relationships again.

A learning setting may be set at step 415. The learning
setting may indicate for how long an agent will attempt to
learn the different methods of a business transaction, how
many methods the agent will attempt to identify, and other
parameters of determining a call graph for one or more busi-
ness transactions. Learning settings may include time, pre-
ferred business transactions, maximum number of business
transactions, length of time to hibernate between learning
sessions, and other parameters. When in “learning mode”, an
agent monitoring a JVM may identify each new method
called during a learning period, and relationships of each
method with any other method. When in “hibernate mode”,
an agent may not identify new methods or method relation-
ships.

Learning of business transaction methods and method rela-
tionships may be ongoing. Though learning settings are set at
step 415, the settings may be changed at any time. Moreover,
learning may occur as a continuous loop. Learning and hiber-
nation may alternate based on time periods, rate of new meth-
ods learned, and other factors. For example, an agent may
learn for five minutes upon execution of a JVM application,
then hibernate for five minutes, and then “learn” methods and
method relationships for another five minutes. In some
embodiments, an agent may “learn” until no new methods are
identified for a period of thirty seconds, and then hibernate for
five minutes.

10

25

40

45

55

8

A call graph may be built at step 420. After learning set-
tings are initially set, an agent may monitor a JVM and build
a call graph from the learned data. In some embodiments, the
call graph may be built from the pre-loaded call graph data,
method data observed while monitoring, or both. A call graph
may indicate a root method of a business transaction, as well
as each method called as part of the completion of the root
method. Examples of call graphs are discussed in U.S. patent
application Ser. No. 12/878,919, titled “Monitoring Distrib-
uted Web Application Transactions”, filed on Sep. 9, 2010,
and U.S. patent application Ser. No. 13/189,360, titled “Auto-
matic Capture of Diagnostic Data Based on Transaction
Behavior Learning”, filed on Jul. 22, 2011, the disclosures of
which are each incorporated herein by reference.

Hot spot methods are identified at step 425. Hot spot meth-
ods are methods identified as being subject to monitoring. For
example, a method may be identified as a hot spot method
based on calls the method makes, complexity, or the method’s
performance. Identifying hot spot methods is discussed in
more detail with respect to the method of FIG. 5.

Learning settings may be updated at step 430. As discussed
above, learning may be an ongoing process. As part of the
ongoing process, learning settings may be adjusted over time.
For example, after hot spot methods are identified, an agent at
a JVM may update learning settings to adjust the time spent
learning new methods of a call graph. Though updating learn-
ing settings is illustrated at step 430, learning settings may be
updated at any time throughout the method of FIG. 4.

Hot spot methods may be validated at step 435. Validation
of hot spot methods may include monitoring a JVM to con-
firm that the identified hot spot methods should indeed be
labeled hot spot methods. For example, the validation may
confirm that a method typically takes longer than a threshold
time period to complete, that a method places a call to an
outside database, or another condition typically occurs for
each method that was identified as a hot spot method at step
425.

Hot spot methods are applied at step 440. Applying hot spot
methods may include instrumenting the byte code of each
method to store the start time and end time of the method. The
instrumentation may also include a location reference within
a method array for storing data, such as an end time for the
method that is instrumented. An exemplary pseudo code for
the instrumentation is shown below:

{
Start.onMethodBegin

(Original method code)

(Original method code)

(Original method code)
OnMethodEnd (9, A, B)

The original code of a hot spot method is instrumented such
that when the method is called, the method ID and the start
time of the method is written to the execution thread header
for the thread executing the method. When the method ends,
the end time is written to the thread header. The method ID,
start time and end time may be written to a method array that
is maintained in the execution thread.

Hot spot data may be captured at step 445. Capturing hot
spot data may include monitoring executing hot spot meth-
ods, tracking calls to additional methods and external
machines, and keeping data that is relevant to outliers. Data
that is not relevant to outliers, such as data for methods that
perform well, may not be kept. Capturing hot spot data is
discussed in more detail below with respect to FIG. 6.

US 9,311,598 B1

9

Hot spot data may be qualified at step 450. Qualifying hot
spot data may include determining which data to store and
what data to not store. Qualifying hot spot data is discussed in
more detail below with respect to FIG. 7.

Hot spot data may be processed at step 455. Processing of
hot spot data may include building a call graph and presenting
call graph information to a user. The call graph data may be
presented as a graphical interface or in some other form. The
call graph may be constructed from captured hot spot data
which is stored until the call graph is requested by a user.
Processing hot spot data is discussed in more detail below
with respect to the method of FIG. 8.

FIG. 5 is a flow chart of an exemplary method for identi-
fying hot spot methods. The method of FIG. 5 provides more
detail for step 425 of the method of FIG. 4. A determination is
made as to whether the execution time of the method was
longer than a threshold. The threshold may be a preset setting
or may be learned over time (e.g., as an average of previous
method execution times). If the method execution time is
longer than the execution time threshold, the method is iden-
tified as a hot spot at step 550. If the method does not execute
for a time longer than the execution threshold, the method
continues to step 515.

A determination is made as to whether the method made a
callto a database at step 515. In some embodiments, a method
that makes a call to a specific application server, such as a
database, may be identified as a hot spot method. If the
method does not make a call to a database, the method may
continue to step 520. If the method does make a call to a
database, the method is identified as a hot spot at step 550.

At step 520, a method is identified as a hot spot method
(step 550) if the method makes a call to an external JVM. If
the method does not make a call to an external JVM, the
method continues to step 525.

At step 525, a method may be identified as a hot spot
method if the method exceeds a cyclometric complexity
threshold. A cyclometric complexity threshold is one mea-
sure for expressing the complexity of a method. Thresholds
relating to other measures of method complexity may also be
used in place of, or in addition to, cyclometric complexity. If
the method cyclometric complexity exceeds a cyclometric
complexity threshold, the method is identified as a hot spot at
step 550. Otherwise, the method of FIG. 5 continues to step
530.

A determination is made as to whether the method orches-
trates a flow at step 530. A method may orchestrate a flow if
the method makes calls to one or more other methods, which
in turn may make calls to one or more additional methods, and
so forth. In various embodiments, the root method may be
determined to “orchestrate” a flow if a at least a threshold
number of children and grandchildren methods are called
directly or indirectly from the root method. If the method
orchestrates a flow, the method is identified as a hot spot at
step 550. Otherwise, the method continues to step 535.

A method may be identified as a hot spot method if is
determined to be an entry point method for the JVM at step
535. If the hot spot method is not an entry point method, a
determination is made as to whether the method is important
to a business function at step 540. For example, for an e-com-
merce site, a method that processes credit card information
may be considered a key business function and, therefore, a
hot spot method. If the method does not satisfy any condition
described in steps 510-540, the method is determined to not
be a hot spot at step 545. If the method satisfies any condition
described in steps 510-540, the method is identified as a hot
spot at step 550.

20

25

30

35

40

45

10

FIG. 6 is a flow chart of an exemplary method for capturing
hot spot data. The method of FIG. 6 provides more detail for
step 445 of the method of FIG. 4. The method of FIG. 6 uses
pointers and a method array stored in an execution thread
header to track data for hot spot methods in a low cost manner.

A business transaction begins at step 610. An index pointer
is set to the first array of a block within the method array at
step 615. The array includes a block for each method called
during execution of the root node of the method, with the first
block associated with the root method. A block pointer is set
to the first filed of the current block at step 620. A hot spot
method ID associated with the currently executing method is
stored at the current block and field within the method array at
step 625, and the block pointer value is updated to point to the
next field in the array. The hot spot method start time is then
stored at the current block and field within the method array at
step 630, and the block pointer value is updated to point to the
next field in the array.

The performance of a method may be determined by
execution time or response time. The execution time is deter-
mined from the difference of the start time and the end time of
the method’s execution. The time may be taken from one of
several different times, including but not limited to the JVM
clock, a server clock, a block clock, or other clock time.

A determination is made as to whether a call to a new
method is detected at step 635. During execution of the cur-
rent method, the method may call a new method to perform
some function. Ifa call to a new method is not detected at step
635, the method continues to step 660.

If a call to a new method is detected at step 635, a deter-
mination is made as to whether the call was made to an
outside JVM at step 640. Ifthe call is made to anoutside JVM,
external call data is stored for the call at step 645 and the index
pointer is set to the external call at step 650. The method then
continues to step 635. If the call is not made to an external
JVM, the index pointer is set to the next available block, the
block pointer is set to the next available address, and the
method continues to step 625.

External call data may be stored in one of several formats,
including a list or table format. For example, a table of exter-
nal calls may be stored as a list of the external methods called
and an identifier of the method that called the external call.
The identifier may by a method array location corresponding
to the method ID, a reference to the block associated with the
method (i.e., block 1 corresponding to a root node method), or
other identifier. If data for the method is eventually stored, the
list (or table) of external call information is stored with the
method array data.

A determination is made as to whether the current method
is complete at step 660. If the current method is still execut-
ing, the method returns to step 635. When execution of the
current method has completed, the hot spot method end time
is written to the method array in the execution thread header
at step 665. In some embodiments, the end time is written to
an address location specified by the instrumented code.

A determination is then made as to whether the method
completion time is greater than a threshold value at step 670.
The threshold may be a pre-set value or learned over time for
the particular method, class of method, business transaction,
or related business transactions. In various embodiments, the
threshold time may be 10 ms, 15 ms, 20 ms, or some other
value. If the method execution time was greater than the
threshold value, the index pointer is set to the next block (or
next available block). By setting the index pointer to the next
block location, the data for the method which just ended is
saved. IF the method execution time is less than the threshold
value, the index pointer is set to the start of the current block.

US 9,311,598 B1

11

By setting the index pointer to the start of the current block,
the data for the current block will be overwritten (and not
saved).

A determination is then made as to whether the current
business transaction has completed with the end of the current
method. If the business transaction is complete, the method
ends at step 695. If the business transaction is not complete,
the index pointer is set to the previous block and the method
continues to step 635.

FIG. 7 is a flow chart of an exemplary method for qualify-
ing hot spot data. The method of FIG. 7 provides more detail
for step 450 of the method of FIG. 4. Hot spot methods are
accessed at step 710. A determination is then made as to
whether the number of hot spot methods is greater than a hot
spot threshold at step 715. The hot spot threshold may be
based on several factors, including the number of available
threads that are available for storing data. If the number of
methods is greater than the threshold, a set ofhigh priority hot
spots are selected at step 725 and the method continues to step
730. Methods of high priority may be those that satisty sev-
eral conditions described with respect to the method of FIG.
5. For example, a method that executes slower than a thresh-
old time and calls an external JVM may have a higher priority
than a method that executes slower than a threshold time and
does not call an external JVM. Ifthe number of hot spots does
not exceed a hot spot threshold, all hot spots are selected at
step 720 and the method continues to step 730.

A determination is made as to whether the number of hot
spot snapshot instances is greater than a hot spot instance
threshold at step 730. A hot spot snapshot instance is a set of
data resulting from the execution of a method instance. An
instance of a method may be executed one or more times. A
hot spot snapshot instance is a “snapshot” or set of the data
generated from the execution of the instance. The hot spot
instance threshold may be selected to avoid an undesirable
level of overhead or resource usage at the JVM. For example,
a hot spot instance threshold of 20 may be used if it is deter-
mined that storing hot spot data for twenty method instances
does not cause a noticeable performance delay in the JVM. If
the number of hot spot snapshot instances is not greater than
the hot spot instance threshold, all snapshot instances are
selected at step 735 and the method continues to step 745. If
the number of hot spot snapshot instances is greater than the
hot spot instance threshold, a number of high priority hot spot
snapshot instances of the selected hot spot methods are
selected at step 740 and the method continues to step 745. Hot
spot snapshot instances may be designated as high priority
based on one or more factors, including for example the
length of execution time, the number of conditions discussed
with reference to FIG. 5 which are violated by the method
class, and other factors.

Data for the selected hot spot snapshot instances is stored at
step 745. The data may be stored by an agent locally to the
agent’s JVM until data is reported to a controller. The stored
data may include the method array written to the thread
header during execution of the methods as well as external
call data, such as a list of external calls made by the methods
being monitored.

A determination is then made as to whether there is addi-
tional hot spot method data to store at step 750. If there is no
further hot spot method data, the method ends at step 755. If
there is additional hot spot method data, the remaining hot
spot methods are selected and the method continues to step
715.

FIG. 8 is a flow chart of an exemplary method for process-
ing stored hot spot data. The method of FIG. 8 provides more
detail for step 455 of the method of FIG. 4. A root block is

20

30

40

45

12

accessed in a business transaction at step 810. The next stored
data block in the business transaction is accessed at step 820.
A determination is then made as to whether the end time of the
current block is greater than the start time of the previous
block at step 830. The determination is designed to indicate
whether the current block is a sibling or a child of the previous
block. Other comparisons may be made to determine the
relationship between the methods associated with the current
block and the previous block. If the current block end time is
not greater than the start time of the previous block, the
current block is determined to be a sibling of the previous
block (step 850) and the method continues to step 860. If the
current block end time is greater than the start time of the
previous block, the current block is determined to be a child of
the previous block (step 840) and the method continues to
step 860.

A determination is made as to whether more blocks exist in
the method array to process at step 860. If more blocks exist,
the method continues to step 820. Ifthe blocks don’t exist, the
call graph is assembled based on block relationships and
provided to a user at step 870.

FIG. 9A is a block diagram of illustrating method calling
hierarchy. As illustrated in FIG. 9A, methods A, B and C are
identified as hot spot methods. Hot spot A makes a call to
method B, and method B may call method C. Method C is a
child of method B, and method B is a child of method A.

FIG. 9B is a block diagram of a method array. The array of
FIG. 9B illustrates blocks pertaining to methods A, B and C of
FIG.9A. Eachblock includes amethod ID, start time, and end
time field for the method corresponding to the block. An
index pointer is set to the currently executing block location
within the array, and the block pointer is set to a location
within the current block.

FIG. 10 illustrates an exemplary computing system 1000
that may be used to implement a computing device for use
with the present technology. System 1000 of FIG. 10 may be
implemented in the contexts of the likes of clients 105-115,
network server 125, application servers 130-160, machine
170, datastores 180-185, and controller 190. The computing
system 1000 of FIG. 10 includes one or more processors 1010
and memory 1010. Main memory 1010 stores, in part,
instructions and data for execution by processor 1010. Main
memory 1010 can store the executable code when in opera-
tion. The system 1000 of FIG. 10 further includes a mass
storage device 1030, portable storage medium drive(s) 1040,
output devices 1050, user input devices 1060, a graphics
display 1070, and peripheral devices 1080.

The components shown in FIG. 10 are depicted as being
connected via a single bus 1090. However, the components
may be connected through one or more data transport means.
For example, processor unit 1010 and main memory 1010
may be connected via a local microprocessor bus, and the
mass storage device 1030, peripheral device(s) 1080, portable
storage device 1040, and display system 1070 may be con-
nected via one or more input/output (I/O) buses.

Mass storage device 1030, which may be implemented
with a magnetic disk drive or an optical disk drive, is a
non-volatile storage device for storing data and instructions
for use by processor unit 1010. Mass storage device 1030 can
store the system software for implementing embodiments of
the present invention for purposes of loading that software
into main memory 1010.

Portable storage device 1040 operates in conjunction with
aportable non-volatile storage medium, such as a floppy disk,
compact disk or Digital video disc, to input and output data
and code to and from the computer system 1000 of FIG. 10.
The system software for implementing embodiments of the

US 9,311,598 B1

13

present invention may be stored on such a portable medium
and input to the computer system 1000 via the portable stor-
age device 1040.

Input devices 1060 provide a portion of a user interface.
Input devices 1060 may include an alpha-numeric keypad,
such as a keyboard, for inputting alpha-numeric and other
information, or a pointing device, such as a mouse, a track-
ball, stylus, or cursor direction keys. Additionally, the system
1000 as shown in FIG. 10 includes output devices 1050.
Examples of suitable output devices include speakers, print-
ers, network interfaces, and monitors.

Display system 1070 may include a liquid crystal display
(LCD) or other suitable display device. Display system 1070
receives textual and graphical information, and processes the
information for output to the display device.

Peripherals 1080 may include any type of computer sup-
port device to add additional functionality to the computer
system. For example, peripheral device(s) 1080 may include
a modem or a router.

The components contained in the computer system 1000 of
FIG. 10 are those typically found in computer systems that
may be suitable for use with embodiments of the present
invention and are intended to represent a broad category of
such computer components that are well known in the art.
Thus, the computer system 1000 of FIG. 10 can be a personal
computer, hand held computing device, telephone, mobile
computing device, workstation, server, minicomputer, main-
frame computer, or any other computing device. The com-
puter can also include different bus configurations, net-
worked platforms, multi-processor platforms, etc. Various
operating systems can be used including Unix, Linux, Win-
dows, Macintosh OS, Palm OS, and other suitable operating
systems.

The foregoing detailed description of the technology
herein has been presented for purposes of illustration and
description. It is not intended to be exhaustive or to limit the
technology to the precise form disclosed. Many modifications
and variations are possible in light of the above teaching. The
described embodiments were chosen in order to best explain
the principles of the technology and its practical application
to thereby enable others skilled in the art to best utilize the
technology in various embodiments and with various modi-
fications as are suited to the particular use contemplated. It is
intended that the scope of the technology be defined by the
claims appended hereto.

What is claimed is:

1. A method for monitoring a business transaction, com-
prising:

recording performance data for each of a plurality of meth-

ods of a network application, the performance data
stored by an agent in a header of an execution thread that
executes the method, the agent stored on a machine that
executes the plurality of methods;

ignoring the performance data for one or more of the plu-

rality of methods that satisfy a threshold;

generating a call graph from the performance data, the call

graph indicating the root method of the business trans-
action and each method called as part of completion of
the business transaction; and

storing the performance data for one or more of the plural-

ity of methods having a root node that does not satisfy a
condition.

2. The method of claim 1, wherein the performance data
includes a start time and an end time for execution of the
method.

3. The method of claim 1, wherein the condition includes a
threshold for time of execution.

5

15

20

25

30

35

45

50

wn

5

60

o
o

14

4. The method of claim 1, wherein the condition includes
calling an external Java Virtual Machine.

5. The method of claim 1, wherein storing the data includes
storing execution data and external call data.

6. The method of claim 1, wherein the performance data is
stored in an array within the execution thread header.

7. The method of claim 1, further comprising:

building a call graph for a Java Virtual Machine; and

identifying methods within the call graph that do not sat-

isfy the condition.

8. The method of claim 1, further comprising:

qualifying the methods associated with the stored data;

storing a portion of the stored data based on the qualifica-

tion of the methods.

9. The method of claim 1, further comprising processing a
stored hot spot data to generate a graphical representation of
the methods.

10. The method of claim 1, further comprising:

automatically identifying one of the plurality of methods

executed as part of a business transaction as part of a
learning process; and

recording performance data for each of a plurality of meth-

ods associated with the business transaction.

11. The method of claim 10, wherein automatically iden-
tifying includes pre-loading previously stored methods asso-
ciated with the business transaction.

12. The method of claim 11, further comprising ending the
learning process based on a number of times that automati-
cally identifying is performed.

13. The method of claim 12, further comprising re-starting
the learning process after a period of time.

14. A non-transitory computer-readable storage medium
having embodied thereon a program, the program being
executable by a processor to perform a method for monitoring
a transaction, the method comprising

recording performance data for each of a plurality of meth-

ods of a network application, the performance data
stored by an agent in a header of an execution thread that
executes the method, the agent stored on a machine that
executes the plurality of methods;

ignoring the performance data for one or more of the plu-

rality of methods that satisfy a threshold;

generating a call graph from the performance data, the call

graph indicating the root method of the business trans-
action and each method called as part of completion of
the business transaction; and

storing the performance data for one or more of the plural-

ity of methods having a root node that does not satisfy a
condition.

15. The non-transitory computer-readable storage medium
of claim 14, wherein the performance data includes a start
time and an end time for execution of the method.

16. The non-transitory computer-readable storage medium
of claim 14, wherein the condition includes a threshold for
time of execution.

17. The non-transitory computer-readable storage medium
of claim 14, wherein the condition includes calling an exter-
nal Java Virtual Machine.

18. The non-transitory computer-readable storage medium
of claim 14, wherein storing the data includes storing execu-
tion data and external call data.

19. The non-transitory computer-readable storage medium
of'claim 14, wherein the performance data is stored in an array
within the execution thread header.

20. The non-transitory computer-readable storage medium
of claim 14, the method further comprising:

US 9,311,598 B1

15

building a call graph for a Java Virtual Machine; and

identifying methods within the call graph that do not sat-

isfy the condition.

21. The non-transitory computer-readable storage medium
of claim 14, the method further comprising: 5

qualifying the methods associated with the stored data;

storing a portion of the stored data based on the qualifica-
tion of the methods.

22. The non-transitory computer-readable storage medium
of claim 14, the method further comprising processing a 10
stored hot spot data to generate a graphical representation of
the methods.

23. The non-transitory computer-readable storage medium
of claim 14, the method further comprising:

automatically identifying one of the plurality of methods 15

executed as part of a business transaction as part of a
learning process; and

recording performance data for each of a plurality of meth-

ods associated with the business transaction.

24. The non-transitory computer-readable storage medium 20
of claim 23, wherein automatically identifying includes pre-
loading previously stored methods associated with the busi-
ness transaction.

25. The non-transitory computer-readable storage medium
of claim 24, the method further comprising ending the learn- 25
ing process based on a number of times that automatically
identifying is performed.

26. The non-transitory computer-readable storage medium
of claim 25, the method further comprising re-starting the
learning process after a period of time. 30

#* #* #* #* #*

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 29,311,598 B1 Page 1of1
APPLICATION NO. - 13/365171

DATED - April 12, 2016

INVENTOR(S) : Jyoti Bansal et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the title page, the last name of inventor Bhaskar Sankara should be spelled “Sunkara,”.

Signed and Sealed this
Eighth Day of November, 2016

Dhecbatle K Zea

Michelle K. Lee
Director of the United States Patent and Trademark Office

